
 

 

 

 

 

 

 

 
Examining, Documenting, and Modeling the  

Problem Space of a Variable Domain 
 
 

Christina Varghese        June 14, 2002 

 

TR-CIS-0612-02 

Copyright2002   All rights reserved 

All copies must contain this copyright notice. 

For permission to copy, contact 
 

Department of Computer & Information Science 

723 W. Michigan Street, SL 280 

Indiana University – Purdue University 

Indianapolis, IN  46202-5132



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
14 JUN 2002 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2002 to 00-00-2002  

4. TITLE AND SUBTITLE 
Examining, Documenting, and Modeling the Problem Space of a Variable 
Domain 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

71 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Acknowledgements 
I would like to express my sincere gratitude to Dr. Andrew Olson for 

providing a great deal of input and guidance throughout my project.  He has spent 

a great deal of time helping me to understand key concepts and to examine issues 

I may not have considered on my own.  I would also like to thank Dr. Shiaofen 

Fang and Dr. Jiang Zheng for serving as members of my project committee.  

Also, I would like to thank my husband Joby for supporting me 

throughout the time I have worked towards my M.S. degree.  Finally, I want to 

thank my daughter Laurna for not being too upset about the many weekends and 

evenings I spent away from her while working on this project. 

This project was supported by the U.S. Department of Defense and the 

U.S. Office of Naval Research under award number N00014-01-1-0746. 

 2



 

Table of Contents 

Acknowledgements ...................................................................................................... 2 
Table of Contents ......................................................................................................... 3 
Abstract ........................................................................................................................... 4 
Introduction ................................................................................................................... 5 

Project Summary......................................................................................................................................... 5 
Domain Engineering ................................................................................................................................... 6 
Generative Programming ............................................................................................................................ 7 

Existing Methods of Domain Engineering .......................................................... 9 
Feature-Oriented Domain Analysis (FODA) .............................................................................................. 9 
Organization Domain Modeling (ODM) .................................................................................................. 12 
Family-Oriented Abstraction, Specification and Translation (FAST) ...................................................... 15 
Software Design Automation (SDA) ........................................................................................................ 18 

Proposed Method for Modeling the Problem Space of a Variable 
Domain ........................................................................................................................... 22 

Introduction............................................................................................................................................... 22 
Method...................................................................................................................................................... 23 

Step I: Describe the Problem Domain................................................................................................... 23 
Step II: Identify Stakeholders ............................................................................................................... 24 
Step III: Expand Domain Definition ..................................................................................................... 25 
Step IV: Acquire and Document Relevant Domain Information .......................................................... 28 
Step V: Model the Domain ................................................................................................................... 31 
Step VI: Validate Models, Dictionary, and Domain Descriptions ........................................................ 49 
Step VII: Create Decision Model.......................................................................................................... 51 
Step VIII: Create ADSL........................................................................................................................ 55 
Step IX: Validate Decision Model and ADSL...................................................................................... 60 
Step X: Get Final Signoff ..................................................................................................................... 61 
Summary............................................................................................................................................... 62 

Future Research Directions.................................................................................... 66 
Conclusion..................................................................................................................... 68 
List of References ....................................................................................................... 70 

 3



Abstract 

In order to reduce development time and costs associated with producing a 

series of related applications, it is necessary to stop focusing on each application 

individually.  Instead a system family approach can be used to understand 

commonalities and differences between individual systems.  Domain engineering 

methods provide guidance on how to achieve this change in focus.  Generative 

programming can help reduce these costs even further by enabling us to move 

beyond the usual practice of manually searching for and then adapting relevant 

components.  This report describes the topics of domain engineering and 

generative programming, examines various current methods of domain 

engineering, and proposes a new domain engineering method that will be used to 

capture and portray a problem domain.   

The domain engineering process proposed by this report limits its concern 

to the problem space of a domain.  The process consists of ten steps that can be 

followed to effectively understand, document and model the problem space.  This 

process combines important aspects of existing domain engineering processes into 

one method.  It also adds several elements that current processes lack including: 

the use of updated modeling techniques (the use of UML) and giving early 

consideration to concerns arising from the distributed heterogeneous 

programming environment that is becoming more and more common today.  The 

process also specifies a grammar that can be used to describe the contents of an 

extended feature model.  The proposed method is explained step by step and is 

illustrated through the use of an example problem. 

 4



Introduction 

Project Summary 

Most software development efforts focus on developing a single system or 

application.  Domain engineering is a way to move that development focus from a 

single system to a family of systems.  Generative programming is domain 

engineering that is taken a step further.  The goal of generative programming is to 

be able to automatically generate an instance of a family of systems based on a 

specification.  Generative programming requires the development of a generative 

domain model.  This model consists of a problem space, a solution space, and the 

necessary configuration knowledge to map them together.  This report examines 

the topics of domain engineering [1] and generative programming [2], examines 

current methods of domain engineering, and proposes a new domain engineering 

method that will be used to capture and portray a problem domain.  The goal of 

this report is to use techniques from domain engineering together with those of 

generative programming and present a method that will allow the automatic 

creation of variants of instances of problems in a domain.  The solution space is 

discussed in this report when applicable, however the process being proposed 

does not extend to this portion of domain engineering.  The process will give 

guidance on how to go about capturing pertinent information when beginning 

development efforts for a new family of systems.  It integrates ideas from current 

domain engineering methods and applies them to domains that may involve 

distributed, heterogeneous environments.   

 5



The existing domain engineering methods that were reviewed during the 

development of this proposed process include: Feature-Oriented Domain Analysis 

(FODA) [3,4], Organization Domain Modeling (ODM) [2,5,6], Family-Oriented 

Abstraction, Specification and Translation (FAST) [2, 7, 8, 9], Software Design 

Automation (SDA) [9], Domain-Specific Software Architecture (DSSA) [10], and 

Draco [11].  The first four of these methods are summarized later in this report.  

These four methods influenced the development of the proposed method in some 

significant way.  Neither DSSA nor Draco provided any sort of a detailed plan on 

how to initially go about analyzing the problem domain.  Consequently, they are 

not examined in greater detail.  

Domain Engineering 

Most software development efforts focus on developing a single system or 

application.  Domain engineering is a way to move that development focus from a 

single system to a family of systems.  A variety of methods (i.e. FODA, ODM, 

FAST, SDA, etc.) exist which provide varying degrees of guidance in how to 

achieve this change in focus.  Most methods support vertical domains or families 

of systems.  This is where entire systems are grouped into domains based on 

common functionality, for example financial system applications.  Other methods 

also support horizontal domains where components or parts of systems are 

grouped together based on their functionality, for example database components.  

This project will explore several of the more detailed methods. 

Domain engineering is typically divided into three different phases: 

Domain Analysis, Domain Design, and Domain Implementation.  The Domain 

 6



Analysis phase typically involves domain scoping and modeling activities.  

Relevant domain information is gathered from a variety of sources including 

interviews with domain experts, work products of any existing systems, 

textbooks, known requirements for future systems, standards, etc.  Domain 

boundaries are established and stakeholders are often identified.  Domain design 

involves the design of a common architecture for the family of systems along with 

a production plan that describes how real components will be produced from the 

common architecture and components.  Domain implementation consists of 

implementing the architecture, the components, and the production plan [1, 2]. 

Application engineering is the follow-up process where a new instance of 

a family of systems is developed by using the results from domain engineering. 

Generative Programming 

The goal of generative programming is to be able to automatically 

generate an instance of a family of systems based on a specification.  The 

achievement of this goal requires the development of a model of the relevant 

product family, some way to specify new products, the availability of components 

from which the product can be assembled, and a means of mapping the problem 

specification to the required components using an implemented configuration 

generator. 

Generative programming requires the development of a generative domain 

model.  This model consists of a problem space, a solution space, and the 

necessary configuration knowledge to map them together.  The problem space 

consists application concepts and features that the user would like to have 

 7



available.  This problem space can be explored using techniques from domain 

engineering.  The solution space is made up of the component implementations in 

all of their potential combinations.  Configuration knowledge takes into account 

considerations such as illegal feature combinations, default settings, default 

dependencies, construction rules, and optimization rules.  Configuration 

generators are created to implement this knowledge.  A configuration generator 

(often referred to simply as a generator) is responsible for checking to see if the 

system can be built, completing the specification by computing defaults, and 

assembling the implementation components [1].  Separation of the problem and 

solution spaces allows each to develop somewhat independently.   

An important concept to keep in mind when designing the problem space 

is that application programmers should only be required to specify as much 

information as is necessary to identify potentially appropriate components from 

the generative library.  The programmer should be allowed to specify details or 

elect to supply some of his own implementations for specific aspects if desired. 

 
The main steps necessary in generative programming are: domain scoping; 

feature and concept modeling; designing a common architecture and identifying 

implementation concepts; specifying domain specific notations for ordering 

systems; specifying the configuration knowledge; implementing the components; 

implementing the domain specific notations; and implementing the configuration 

knowledge using generators [2]. 

 

 

 8



Existing Methods of Domain Engineering 

Feature-Oriented Domain Analysis (FODA) 

FODA is a domain analysis method that was developed at the Software 

Engineering Institute.  The method was based on a detailed study of other domain 

analysis approaches.  The idea of a domain in the context of this method relates to 

a family of systems.  The main product of this method is a structured framework 

of related modes that document the results of the domain analysis. 

The primary goal of this method is to develop products that are generic 

and widely applicable within a domain.  FODA achieves this goal by applying 

two concepts: abstraction (also referred to as generalization) and refinement (also 

referred to as specialization). The idea is to abstract away any differences between 

applications in a domain.  Domain products may then be created which are 

applicable to the entire system family.  Specific applications may then be 

developed using refinements of the basic domain products.  The refinements will 

reintroduce any factors that make each application unique. 

 FODA consists of three phases, the first two of which are much more 

effectively documented.  The first phase is called Context Analysis.  The goal of 

this first phase is to provide the context of the domain, which basically means to 

define its scope.  The second phase consists of domain modeling.  This phase 

looks at commonalities and differences between applications within a domain.  

Several types of models are produced.  The last phase consists of architectural 

modeling.  This consists of providing a software solution for creating new 

applications for the domain.  Each phase will now be explained in greater detail. 

 9



As previously mentioned, the main purpose of context analysis is to define 

the scope of a domain.  Relationships between the domain and external elements 

are analyzed, and variability of the relationships and the external conditions are 

evaluated.  The final results of this analysis are documented in a context model. 

This context model consists of one or more structure diagrams as well as data-

flow diagrams.  The purpose of the structure diagrams is to portray how the target 

domain is related to other domains.  Data flow diagrams show how data flows 

between the target domain and any other entities that it communicates with.  

Detailed information is gathered for each entity identified.   

The Domain Modeling phase is comprised of three major activities 

including feature analysis, information analysis, and operational analysis.   

The purpose of Feature Analysis is to capture and model the end-user’s 

understanding of general capabilities or features of applications within a domain.  

The feature model is used to portray the common features and the differences 

between applications within a domain.  Features are defined as “the attributes of a 

system that directly affect end-users”.  Features may be defined as optional, 

mandatory, or alternative.  Also included in the feature model are composition 

rules which define semantics existing between features that are not expressed in 

the core feature diagram as well as any rationale which should be considered 

when choosing from alternative features.  Full documentation of a feature model 

will include: a structure diagram showing a hierarchical decomposition of features 

that indicates which ones are mandatory, optional, or alternative, a definition of 

each feature, and any composition rules.  This model will serve as a 

 10



communication medium between users and developers.  The process for creating 

this model consists of the following steps: collecting source documents, 

identifying features, abstracting and classifying the identified features, defining 

the features, and validating the model.   

During Informational Analysis (also called Entity-Relationship Modeling) 

the domain knowledge that is essential for implementing applications in the 

domain is defined, analyzed and captured. This knowledge is represented in terms 

of domain entities and their relationships and is made available for the derivation 

of objects and data definitions during operational analysis and architecture 

modeling.  The model may be an entity relationship (ER) model, an object-

oriented (OO) model, or a semantic network. 

Operational Analysis (or Functional Analysis) identifies the behavioral 

and functional commonalities and differences of applications within a domain.  

The specification of function describes the structure of an application in terms of 

inputs, outputs, activities, internal data, logical structures, and data-flow 

relationships.  The specification of behavior describes how an application 

responds in terms of events, inputs, states, conditions, and state transitions.  An 

abstract model of the functionality of the family of applications is defined at the 

top level.  As the abstract model is refined alternative and optional features are 

embedded into the model.  Any issues raised during analysis or resolution are also 

captured. 

The final phase of FODA is Architectural Modeling. The purpose is to 

provide a software solution to the problems defined in the domain modeling 

 11



phase.  The model must address these problems in a way that the model can be 

adapted to any future changes in technology or in the problem itself.  The 

proposed solution is to use architectural layering.  The architecture is defined at 

different levels of abstraction so reuse may occur at any layer.  The FODA 

methodology defines four layers and focuses on the top two: the Domain 

Architecture Layer and the Domain Utilities layer. The result is the development 

an application domain-oriented architecture.  This is a high level design which 

packages functions and objects into software modules.  Concurrent tasks are 

identified and communication and synchronization between tasks is defined using 

the DARTS (Design Approach for Real-Time Systems) notation.  Finally, each 

task is designed as a sequential program [3,4]. 

Organization Domain Modeling (ODM) 

Organizational Domain Modeling (ODM) is a formal, tailorable approach 

to domain engineering.  The method was formalized by Mark Simos of Organon 

Motives Inc. and was funded by the ARPA STARS program.  ODM is most 

successful when used to support domain engineering projects for domains which 

are mature, reasonably stable, and economically viable.  

One issue, which is heavily emphasized by this method, is understanding 

stakeholders and their individual goals.  As Simos says “Stakeholder issues, 

always a potential problem in any project, turn out to be critical risk factors in 

domain engineering, which by definition involves designing for multiple contexts 

of use.” [5].  The interests of stakeholders are reconsidered at critical points 

throughout the domain modeling life cycle. 

 12



The overall goal of ODM is to systematically turn software artifacts from 

legacy systems into reusable assets that can be useful for future development 

efforts.  ODM is applicable to both families of systems (vertical domains) as well 

as sub-portions of systems (horizontal domains).  The method may therefore be 

useful both in re-engineering portions of legacy systems and in guiding the 

development of new systems. 

The method is made up by three distinct phases: Plan Domain 

Engineering, Model Domain, and Engineer Asset Base.  Each phase is divided 

into three subphases, each of which requires the performance of three tasks.  The 

method is explained in more detail in the following paragraphs. 

The Plan Domain phase focuses on understanding stakeholders, scoping 

the domain, and defining relevant domain boundaries.  The first subphase, set 

objectives, is made up of determining the identities of relevant stakeholders, 

understanding their objectives as well as the overall project objectives, and 

prioritizing among the identified stakeholders/objectives.  The second subphase, 

scope domain, includes tasks such as identifying and characterizing potential 

domains in areas of interest, defining the selection criteria by which a domain will 

be chosen, and finally selecting the domain to proceed with.  The third subphase, 

define domain, consists of defining the domain boundaries through both rules and 

examples of systems which are to be included, identifying the main features of 

systems falling with in this domain, and analyzing the relationships between this 

and other domains.  These scoping steps attempt to make the boundary decisions 

 13



explicit and public, helping to avoid later conflicts over what is and is not 

included. 

 The Model Domain phase is concerned with gathering and documenting 

relevant domain information.  Acquiring domain information is accomplished by 

first planning the task, then collecting information from domain experts, system 

users, existing legacy documentation, literature studies, etc… This subphase is 

complete when the information is integrated and the most relevant system features 

have been identified.  The next subphase involves describing the domain.  This 

first entails developing a lexicon of domain terms that essentially captures the 

specific language of the domain.  The next steps are to model the semantics of key 

domain concepts and then to model the variability of these concepts through 

identification and representation of features.  The final subphase is refining the 

domain.  This involves integrating existing models into a consistent overall 

model, modeling the trade-offs for why certain features are used or not used and 

finally clustering and experimenting with different combinations of features. 

The final phase of ODM, Engineer Asset Base, consists of scoping, 

architecting, and implementing an asset base for the relevant domain.  Scoping the 

asset base consists of correlating features with customers then prioritizing among 

them, and selecting which will be implemented.  Architecting the asset base is 

accomplished by determining external and internal architecture constraints, and 

defining an architecture based upon these.  The final subphase, implementing the 

asset base, consists of planning the implementation, implementing assets and 

finally implementing the infrastructure including asset retrieval and qualification 

 14



mechanisms.  Traceability from features back to exemplar artifacts should be 

preserved so that developers have access to potential prototypes [1,6]. 

Family-Oriented Abstraction, Specification and Translation 

(FAST) 

Family-Oriented Abstraction, Specification and Translation (FAST) is a 

domain engineering method which focuses on software families or product lines.  

A software family is a group of products that share common features and meet the 

needs of a particular market area.  FAST was developed by David Weiss et al. at 

Lucent Technologies Bell Laboratories and was greatly influenced by the 

Synthesis method.  FAST has been applied to over 25 domains at Lucent and has 

been shown to reduce development time and cost by 60 to 70% for new family 

members [1]. 

The overall goal of FAST is to create processes and assets for producing 

new members of a program family as fast and cheaply as possible.  Steps to 

achieving this goal include finding appropriate abstractions for the family, 

creating a language to describe them, and creating the tools necessary to translate 

descriptions of family members into software and documentation deliverables.  

The FAST process attempts to provide guidance in each of these areas.  FAST 

consists of two subprocesses: domain engineering and application engineering.  

During domain engineering, the software family is defined and an environment 

for producing family members is developed.  Application engineering then uses 

this application environment to produce family members [7].  Feedback from use 

of the application engineering environment may suggest potential changes.  The 

 15



domain engineering subprocess shall be explained in detail for the remainder of 

this section. 

The domain engineering subprocess begins with collecting and 

documenting the knowledge pertaining to a particular domain through a method 

called the commonality analysis.   The product of this method is the Commonality 

Analysis document, which is created through a series of moderated meetings with 

domain experts.  The document consists of seven sections described as follows.  It 

begins with an Overview, which briefly describes the domain and how it is related 

to other domains.  The Overview is followed by a Definitions section that records 

key technical terms and their meanings.  The third section is Commonalities.  

Commonalities are assumptions that are true for every member of a product 

family.  Examples may include common attributes or functionality.  The fourth 

section lists the Variabilities.  Variabilities describe how individual members of a 

product family may differ.  Examples include optional attributes or functions.  

This is followed by Parameters of Variation.  This section captures the possible 

values of the variabilities including the specification of legal values, any default 

values, and the binding time for each value.  The sixth section, Issues, captures 

any significant problems that were encountered by the team.  When issues are 

resolved, the alternatives, chosen solution, and any applicable discussion are all 

recorded.  The final section, Scenarios, captures examples used when describing 

commonalities and variabilities (usability and variability scenarios) [8]. Team 

members then review the CA document once an iteration is complete.  The review 

inspects the content and structure of the document.  This review is followed by 

 16



another review performed by engineers who are knowledgeable of the domain but 

who did not participate in the making of the document. 

The next step in the domain engineering subprocess is to define the 

Decision Model.  This decision model should consist of the set of all requirements 

and engineering decisions that must be resolved by an application engineer in 

order to construct a new member of the product family.  The model lays out these 

decisions in an appropriate order.  This model is derived from the Commonality 

Analysis document. 

Following the definition of the decision model is the design of the 

Application Modeling Language (AML).  This is what the application engineers 

will use to specify a new product family member; therefore any decisions 

identified in the decision model must be expressible in the AML.  These 

descriptions are then generated into working applications and documentation.  

Either a compositional or a compiler approach may be used for the AML.  If a 

compiler approach is used, only the abstract modules and the parameters of 

variation are specified in a domain.  On the other hand, if a compositional 

approach is used, then a domain design specifying the architecture of the family is 

created.  If multiple components interact, then a compositional mapping between 

the AML and the components specified in the design must be created. 

The final step in the domain engineering subprocess is to actually 

implement the family/domain.  This consists of designing and creating the 

application engineering environment.  Both generation and analysis tools may be 

created.  Generation tools take the AML specification as input and produce code 

 17



and documentation.  Analysis tools may be used to analyze member specifications 

and produce feedback concerning consistency and or completeness of the 

specification, performance estimates, comparisons of different models, etc.  

Libraries of common assets are also specified, including code and documentation 

templates.  Following the design specification, appropriate tools and their 

supporting data should be found or built, and any applicable templates should be 

written in a suitable language.  Depending on whether the compiler or 

compositional approach was used for the AML, either a compiler or a 

compositional mapping that composes applications from library templates must 

be implemented.  Finally the application-engineering environment should be 

documented [9]. 

Software Design Automation (SDA) 

Software Design Automation (SDA) is a method for developing tool-

supported formal specification languages or application generators that is being 

developed by the Pacific Software Research Center at Oregon Graduate Institute 

(PacSoft).  It is intended to be applied to mature, stable problem domains.  SDA 

uses mathematical models to express the problem requirements of a particular 

problem domain. A key concept behind SDA is to use Denotational Semantics to 

capture the complete specification of the domain specific language.  Denotational 

Semantics is a type of language definition that expresses the meaning of a phrase 

in terms of its constituent parts. Another key concept in SDA involves the use of 

Monads.  Monads are a way to structure semantics that expresses abstraction over 

notations or compositions.  Functional languages are used to formally capture a 

 18



language specification.  They capture the user’s view of the domain as a data type 

and are used to model the solution space of the domain.  They are then used to 

implement the semantics-based interpreters from the problem space to the 

solution space.  When the interpreter has been built, a specification can be written 

in the domain specific language to run with the interpreter to produce a new 

component.   

SDA is comprised of the following three phases: analyze the domain, 

define the language, and implement the generator and support products.  These 

phases are applied in an iterative fashion.  When and how many times to iterate is 

dependent upon the domain.  The following several paragraphs will give an 

overview of the first two phases of the SDA process with an emphasis on phase 

one.  The third phase will not be covered since it is not applicable to this project. 

Analyzing the domain is broken down into five main activities beginning 

with capturing a written definition of the domain.  The purpose is to informally 

document information relevant to the domain, giving the language design team an 

initial understanding, and to identify domain experts for later feedback and asset 

validation.  This documentation should include a high level problem statement, a 

model of the surrounding system architecture including the interfaces of 

neighboring domains/entities (for use in defining domain boundaries), an initial 

set of domain requirements including expected behavior and constraints of any 

instances, and a workflow analysis, which among other things captures common 

notations and concepts used by engineers.   

 19



The second activity, which actually runs concurrently with the first one, 

involves the formulation of a formal domain model.  This is essentially the 

problem view, as the user perceives it.  It is important to capture an initial model 

early on in order to focus the information gathering activities.  Mathematical 

structures should be used to abstract and formalize domain concepts when 

possible.  The domain model can be captured directly as a parameterized 

functional language data type.  Specification of the parameters should then 

determine an instance of the domain.   

The next major activity is to define the solution model.  The solution 

model should partition the domain into the components and connectors necessary 

to provide the needed functionality.  Since the problem domain is assumed to be 

mature and stable, there should be solutions in existence that can be analyzed.  

Interfaces to functions or modules should be used to specify legal interactions.  

These should be accompanied by descriptions of how the modules interact.  

Finally the overall system architecture should be documented. 

Capturing the interface to the legacy environment is the fourth major 

activity.  Analyzing the run time environment of any legacy system that exists 

will ensure that the generated code will be able to integrate properly with it.   

Analyzing the domain ends by validating all models developed so far.  A 

preliminary validation of the models may be achieved by showing that a solution 

can be calculated for a particular problem described in the domain.  This example 

problem should be taken from domain experts who should observe the process of 

how the solution is obtained.   

 20



The second major phase of the SDA process is to define the domain 

specific language.  The goal of the first half of this phase is to capture the initial 

language definition.  One portion of the language definition is to specify its type 

system. This includes specifying all atomic entities and entity composition rules.  

A user feedback plan should also be developed so that structured feedback can be 

received from potential users as the language develops.  The workflow analysis 

and user view domain model, which were captured in phase one, should be used 

when developing the core syntax.  The language must be expressive over all 

domain entities and solution parameters allowing application engineers to specify 

new members of a product domain.   

The second half of defining the language is to formalize the semantics.  

The purpose is to produce an interpreter that captures the external semantics of 

the language formally in a denotational style.  The syntactic terms of the language 

should be given semantic descriptions.  The language should contain a collection 

of phrases, each of which specifies some function.  Monads should be used to 

capture any useful abstractions for structuring the solution.  Semantics of any new 

language are based upon semantics of existing similar languages [9]. 

 21



Proposed Method for Modeling the Problem Space of a  

Variable Domain 

Introduction 

There are various methods of domain engineering already in existence.  

Several of these have been discussed in detail in previous sections of this report.  

Although there is some overlap in the processes presented by these methods, each 

in some way offers an individual contribution to better understanding the problem 

analysis phase of a new domain.  The first item that is missing from all of them is 

any consideration that the problem is likely to be embedded in a distributed 

heterogeneous environment.  While consideration for this likely outcome will take 

place in a larger degree during the solution phase of domain analysis, preparations 

should begin when examining the problem.  Additionally, many of the methods 

advocate use of models that are rather outdated.  None of them recommend the 

use of UML.  The Object Management Group unanimously adopted UML in 1997 

as a standard [12]. Since then UML has quickly emerged as the industry standard 

for modeling enterprise software systems in domains ranging from finance and 

manufacturing to health and telecommunications [16]. The method proposed by 

this report attempts to integrate ideas from existing domain engineering methods 

with the use of relevant UML diagrams, as well as giving early consideration to 

concerns present in distributed heterogeneous systems. 

 22



Method 

This proposed method consists of ten distinct steps.  In the following 

paragraphs, each of these steps will be explained in detail.  Each will then be 

further illustrated through the use of an example application.  The application that 

will be used is a financial system that will compute net income for either a 

manufacturing or a wholesaling business.  This system should include relevant 

sources of revenue and expense when computing the final figure.  Since 

accounting is not the primary focus of this illustration, the sample problem will be 

somewhat simple in nature.  A summary outlining the basic steps of the process 

can be found at the end of this section. 

Step I: Describe the Problem Domain 

The goal of step one is to gain an initial understanding of the new problem 

domain.  This is important because it gives everyone involved in the project an 

initial understanding of what needs to be accomplished.  This should begin with 

the development of a problem statement.  Although, this may not be very detailed 

at this point in time, it is important to get the overall goal down on paper at the 

beginning of this process.  The next item to be produced is a general description 

of the capabilities that applications falling within this domain should possess.  

This should include any desired properties of the system family that have not yet 

been captured in the problem statement.  The final item to be produced is a list of 

any existing applications that would fall under the description of this domain. 

Exhibit 1 shows the output of this first task for our example net income 

domain. 

 23



 

S

w

re

T

fo

c

a

w

p

c

a

T

n

 

 

 

 

 

 

 

 

Exhibit 1: Step I in the Net Income Domain 
 
Problem Statement:  
 
To create a financial system that is able to determine earnings for either a manufacturing or 
wholesaling client. 
 
Description of General Capabilities: 
 
The systems should be able to compute net income when given applicable revenue and 
expense figures.  These figures should be fed by a separate general ledger system or input by a
user if a general ledger system does not exist.   
 
Existing Applications:  
 
There are no existing applications that would fall within this new domain. 
 

tep II: Identify Stakeholders 

The goal of step two is to produce a list of people who will be involved 

ith the project in any significant way.  These people may have oversight 

sponsibilities or they may be a resource for better understanding the domain.  

his group of stakeholders and domain experts may include some or all of the 

llowing groups of people: senior management, project management, end users, 

ustomers, other service recipients, other service providers, investors, developers, 

nd regulators.  Be sure to include developers currently working on the project as 

ell as those who may have worked on any legacy systems that are currently in 

lace.  This second group of developers may be knowledgeable about available 

omponents that may be reused.  If the project is one that will have an overseas 

udience via the Internet it is important to include users from those locations.  

his will allow the project team to become aware of any additional or different 

eeds that this user group may have. 

24



For our net income domain four groups of people were recognized as 

important stakeholders.  Senior management and project leadership were included 

to ensure that they remain aware of ongoing progress.  Application engineers are 

important as a source of information about any previous projects that may be 

related to the current project.  They will also be the key people later developing 

the software solution.  Financial analysts or accountants are the end users of this 

system.  They are also the people who can provide information regarding the 

different types of revenues and expenses that our domain will need to consider. 

 

 

 

 

 

Exhibit 2: Step II in the Net Income Domain 
 
Potential Stakeholders and Domain Experts: 
 
Senior Management 
Project Leaders 
Application Engineers 
Financial Analysts/Accountants 

Step III: Expand Domain Definition 

Step three consists of conducting a series of moderated meetings with the 

types of stakeholders identified in the previous step.  A variety of tasks should be 

accomplished as an outcome of these meetings.  The first task is to identify the 

overall project objectives.  These should consist of the overall goals by which the 

success of the project will be measured.  A variety of stakeholders will have input 

regarding the contents of this list.  The second task is to expand the description of 

the domain.  The domain experts should be able to assist a great deal.  Any 

performance constraints and other types of non-functional requirements that all 

systems in this domain must meet should be included in this section.  The third 

 25



task in this step is to define the boundaries of the domain.  Any other domains or 

entities that instances of this domain will communicate with should be noted in 

this section.  This section will help define what types of applications are and are 

not included in the project.  Giving examples of specific applications that do and 

do not fall with the new domain may be helpful.  The final task in step three is to 

generate a good list of potential sources of domain information.  The following 

are some sources that may be helpful: information regarding applications that 

have previously been developed and fall into the domain (i.e. requirements 

analysis documents, existing code, etc.); developers who may have worked on 

related applications; other domain experts not previously identified; users of 

existing applications; people or documents that have information about 

entities/other domains with which applications from this domain must 

communicate; other existing sources of information including textbooks, 

standards, etc.  This list is not intended to be a comprehensive list of information 

sources, but should serve as a starting point. 

Figure III shows the work products that were created when the process 

was applied to our net income domain. 

 26



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 3: Step III in the Net Income Domain 
 
Project Objectives: 
 

1. Finish all phases of domain analysis in the time specified by senior management. 
2. Produce quality work products at all stages from planning through product 

development. 
3. Produce complete, high quality documentation as specified by the process. 
4. Successfully implement the project while remaining at or under the specified budget. 

 
Domain Description: 
 
This domain is made up of financial systems that will compute net income when given 
applicable revenue and expense figures.  These figures should be fed by a separate general 
ledger system or input by a user if a general ledger system does not exist.  The system should 
return the correct earnings figure to the user in a speedy manner (less than n seconds).  
 
Domain Boundaries: 
 
This domain will only be concerned with earnings derived from manufacturing or wholesaling 
activities.  This domain will not capture earnings for businesses whose revenues and/or 
expenses vary in nature from that of a wholesaler or manufacturer.  For example, banking 
clients will not be accommodated. The domain may interact with a general ledger system.  If a 
general ledger system exists, it will retain responsibility for recording individual accounting 
entries.  The domain will also include a user interface to capture user entries. 
 
Potential Sources of Information: 
 

1. Financial Analysts/Accountants – May have knowledge regarding features and 
financial rules. 

2. Application Engineers – May have applicable knowledge from past developments of 
related applications.  May also have knowledge regarding system requirements at 
various sites. 

3. Textbooks – May have formal definitions of key terms. 
4. GAAP (Generally Accepted Accounting Standards) – This accounting standards 

guide may have guides on how to calculate income. 
 

 

 

 

 

 

 

 27



Step IV: Acquire and Document Relevant Domain Information 

The objective of step four is to gather and document relevant domain 

information.  The tasks identified in this step should be repeated as many times as 

necessary to gain a thorough understanding of the problem.  The first logical task 

is to interview the people previously identified in step three.  The interviewer 

should keep detailed notes of information gathered.  Important items to document 

include the definitions of common words or expressions particular to the domain 

as well as capabilities that will be required for applications that fall within the 

domain.  The next task is to consult other information sources identified in step 

three to fill in any knowledge gaps about the domain. The third task is to create a 

dictionary of common terms.  Exhibits 4a and 4b contain an example of such a list 

for the net income example. 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 4a: Domain Dictionary for the Net Income Domain 
 
Dictionary of Common Terms: 
 

ADVERTISING AND PROMOTION – The cost associated with the practice of bringing to 
the public's notice the good qualities of something in order to induce the public to buy or 
invest in it. 
 
BAD DEBT EXPENSE – Cost associated with writing off money that is owed to you that you 
cannot collect. 
 
COST OF GOODS SOLD – The direct cost to the business owner of those items which will be
sold to customers. 
 
COST OF GOODS MANUFACTURED – Includes all expenses directly associated with the 
manufacturing of goods.  
  
COST OF GOODS WHOLESALED – Includes costs associated with the purchase of goods 
for resale. 
 
DEPRECIATION - is the amount of expense charged against earnings by a company to write 
off the cost of a plant or machine over its useful live, giving consideration to wear and tear, 
obsolescence, and salvage value. 
28



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 4b: Domain Dictionary for the Net Income Domain (continued from 4a) 
 
Dictionary of Common Terms: 
 
DIRECT LABOR – The cost of workers who transform the materials into a finished product at
some stage in the production process. 
 
DIRECT MATERIALS – Those materials that can be feasibly identified with the product. 
 
GENERALLY ACCEPTED ACCOUNTING PRINCIPLES (GAAP) - Term used to describe 
broadly the body of principles that governs the accounting for financial transactions 
underlying the preparation of a set of financial statements. Generally accepted principles are 
derived from a variety of sources, including promulgations of the Financial Accounting 
Standards Board and its predecessor, the Accounting Principles Board, and the American 
Institute of Certified Public Accountants. Other sources include the general body of accounting
literature consisting of textbooks, articles, papers, etc.  
 
GENERAL LEDGER - is the set of accounting records that show all the financial statement 
accounts of a business. 
 
MANUFACTURING OVERHEAD – is the costs associated with providing and maintaining a 
manufacturing or working environment. For example: renting the building, heating and 
lighting the work area, supervision costs and maintenance of the facilities. Includes indirect 
labor and indirect material. 
 
NET INCOME – is the company’s total earnings, reflecting revenues adjusted for costs of 
doing business, depreciation, interest, taxes and other expenses. 
 

Task four is to identify common features for applications that will fall 

within the domain.  These features should be classified based on whether they will 

appear in every application created (common features) or whether they will 

appear in only some of the applications (variable features).  For example, in the 

net income domain all applications will need to capture sales revenue, but only 

some will need to capture other revenue.  Any composition rules and/or 

mathematical formulas representing relevant business knowledge should also be 

documented at this time.  An example from the net income domain would be to 

note how net income is composed of revenue and expenses.  Exhibit 5 shows the 

 29



common and variable features as well as the composition rules that were 

identified for the net income example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 5: Common and Variable Features for the Net Income Domain 
 
Features of Applications within the Net Income Domain: 
 

1. Net Income – Common feature 
2. Revenue – Common feature 
3. Sales Revenue – Common feature  
4. Other Revenue – Variable feature 
5. Cost of Goods Sold – Common feature 
6. Cost of Goods Wholesaled – Variable feature  
7. Cost of Goods Manufactured – Variable feature 
8. Purchases – Variable feature 
9. Direct Materials – Variable Feature 
10. Direct Labor – Variable feature 
11. Selling and Administrative Costs – Common feature 
12. Sales Salaries – Common Feature 
13. Advertising and Promotion – Variable feature 
14. Depreciation – Variable feature 
15. Bad Debt Expense – Variable feature 
16. Other Expenses – Variable feature 

 
Composition rules: 
 

1. Net income must include revenue and expenses. 
Net Income = Revenue – Expenses 
 

2. Revenue must include sales revenue and may include other revenue. 
Revenue = Sales Revenue + Other Revenue 
 

3. Expenses must include cost of goods sold and selling and administrative expense, and 
may include other expenses. 
Expenses = Cost of Goods Sold + Selling and Admin. Expense + Other Expenses 
 

4. Cost of goods sold may include either cost of goods manufactured or cost of goods 
wholesaled. 
Cost of Goods Sold = Cost of Goods Wholesaled | Cost of Goods Manufactured 

 
5. Cost of goods wholesaled must include purchases. 

Cost of Goods Wholesaled = Purchases 
 

6. Cost of goods manufactured must include direct materials, direct labor, and 
manufacturing overhead. 
Cost of Goods Manufactured = Direct Materials + Direct Labor +  

        Manufacturing Overhead 
 

7. Selling and administrative may include one or more of the following:  sales salaries, 
advertising and promotion, depreciation, and bad debt expense. 
Selling and Admin. Expense = Sales Salaries + Advertising and Promotion + 
                                                  Depreciation + Bad Debt Expense 

 30



The final task for step four is to document any knowledge regarding 

communication that takes place between the new domain and any outside domain 

or entity.  The type of communication that takes place as well as any established 

communication interfaces that must be used should be documented.  If the 

interfaces have not yet been determined, this fact should be noted.  This is also a 

good time to note any concerns that may arise from the distributed nature of any 

outside entity.  For example if frequent communication must take place with a 

mobile entity, the problem may need to take limited connectivity or additional 

security concerns into account.   

Exhibit 6 shows the result of this task for the example net income domain.  

 
 

S

e

p

u

U

re

th

 

 

 

 

 

 

Exhibit 6: Communication with outside Entities for the Net Income Domain 
 
Communication Between Entities: 
 
The system will receive relevant revenue and expense figures from either a general ledger 
system or a user.  Since the general ledger system may vary for each client, there is no 
communication interface that can be noted at this time.  This is a point of variation that must 
be planned for.  The interface to the general ledger may also change for the same client in 
time.  A user interface must also be created.  It must enable the user to enter relevant revenue
and expense figures when no general ledger system is present, and view the results of the 
income calculation. 

net
tep V: Model the Domain 

The goal of step five is to model the new domain.  The models will enable 

veryone involved in the project to better understand different aspects of the 

roblem.  An extended version of the FODA feature diagram is used as well as 

se case diagrams, sequence diagrams, and collaboration diagrams from the 

nified Modeling Language [12].  The domain dictionary should be updated to 

flect any new terms or new detail about existing terms that is discovered during 

e modeling phase. 

31



The first task is to create a feature model similar to the one used in the 

FODA method of domain engineering.  This uses an extended feature diagram in 

order to capture common distributed computing concerns.  Like FODA, each 

feature is represented as a box.  These features are then arranged in a hierarchical 

manner.  Each feature is decomposed until it is present at the level of interest to 

the user.  The leaf nodes of the feature diagram are of particular importance.  

Assuming that the system will be implemented as a collection of distributed 

components, each leaf node represents the correlating component that will 

implement its specified functionality.  The box has a solid outline if the leaf node 

feature must be present in order for the system to run correctly.  On the other 

hand, if the leaf-node feature represents system functionality that is not essential, 

its box is outlined in a dashed manner.  All non-leaf node features are represented 

with solid box outlines.   

Generally, each feature has a filled circle above it if it is a common feature 

across all applications within the domain.  While, if the feature is 

variable/optional across different applications, the circle is not filled in.  There is 

one exception to these rules that may occur.  Sometimes an optional feature may 

have mandatory children.  In this case, the optional parent feature has an unfilled 

circle while any children have filled circles.  An example of this situation occurs 

in the net income domain.  A client may be a manufacturer or a wholesaler.  

Therefore, the client will incur either a cost of goods wholesaled expense or a cost 

of goods manufactured expense.  If a client is a wholesaler and incurs cost of 

goods wholesaled, then this must include a purchases expense.   

 32



A solid triangle means that one or more of the decomposed features must 

be present.  A hollow triangle means that exactly one of the more detailed features 

is present.  Any communication found to be necessary between leaf-node features 

(components) should be represented by a dashed line.  Exhibits 7a and 7b contain 

the feature diagrams applicable for the net income example.  Exhibit 7a begins 

with the business domain and further decomposes this into wholesalers and 

manufactures.  From there the two sub-trees that begin with net income are very 

similar.  Feature modeling enables us to represent variation in such a way that we 

can condense this first feature diagram into the one contained in exhibit 7b 

without losing any relevant information.  This feature diagram begins with net 

income since this is the focus of our problem domain. 

In the net income domain, all components (leaf-node features) must be 

present in order for net income to be correctly computed, so all of the boxes are 

solid.  Also, this is not a domain where the features would need to communicate 

with each other so no dashed lines are present.  This diagram can be easily 

derived from the information captured in the fourth step. 

 33



 
E

xh
ib

it 
7a

: D
et

ai
le

d 
Fe

at
ur

e 
D

ia
gr

am
 fo

r 
th

e 
N

et
 In

co
m

e 
D

om
ai

n 



 

 

 

 

 

 

 

 

 

Exhibit 7b: Condensed Feature Diagram for the Net Income Domain 

The second task for step five is to create a series of use cases that show 

how any actors (outside entities or applications from other domains) will interact 

with applications within this system.  Use cases are a good tool for showing the 

functionality of the system as it is perceived by outside users (actors).  The 

number necessary will depend upon complexity of the project.  Exhibits 8a, 8b, 8c 

and 8d show the four possible use case diagrams for the net income domain.  

Exhibit 8a shows what happens when net income is calculated for a 

manufacturing client using a general ledger system.  Exhibit 8b is the same as 8a 

except now the client is a wholesale company.  Exhibit 8c calculates net income 

for a manufacturer when there is no general ledger system available.  Exhibit 8d is 

the same as 8c except the client is a wholesale company. 



 

 

 

 

 

 

 Exhibit 8a: Use Case Diagram 1 for the Net Income Domain 

General 
Ledger 

System 

Get Revenue & 
Manufacturing 

Expense Figures 

 User 
Calculate Net 

Income 

<<include>> 

 

 

 

 

 

 

 

 

 Exhibit 8b: Use Case Diagram 2 for the Net Income Domain 

General 
Ledger 

System 

 User 
Calculate Net 

Income 

Get Revenue & 
Wholesale Expense 

Figures

<<include>> 

 

 

  Exhibit 8c: Use Case Diagram 3 for the Net Income Domain 

User 

System

Calculate Net 
Income 

Get Revenue & 
Manufacturing 

Expense Figures 

 

 

 

 <<include>> 

 36



 

 

 

 

 

 

 

 

 

 Exhibit 8d: Use Case Diagram 4 for the Net Income Domain 

User 

System

Calculate Net 
Income 

Get Revenue & 
Wholesale Expense 

Figures

<<include>> 

 

The next task for step five is to create one or more sequence diagrams to 

show how this new domain would communicate with other domains/entities.  

Sequence diagrams are good at showing how a set of messages is sent over time. 

At a minimum, one sequence diagram should exist for every use case identified 

by the use case diagrams.  If the use case is more complex, it may have a number 

of alternative paths through it depending on data values given.  If such alternative 

paths exist, a separate sequence diagram should be created for each one.  Each 

sequence diagram should include a text description of what should take place if 

any of these outside systems become unavailable.  Also, if the method by which 

the system will communicate with these outside entities is unknown this should be 

documented as a part of the diagram.  This is done to take into account potential 

communication uncertainty between geographically dispersed systems.  Five of 

the sequence diagrams that apply to the example net income domain are shown in 

 37



exhibits 9a, 9b, 9c, 9d, and 9e.  These five sequence diagrams show the potential 

variations that exist when all of the optional components (shown in Exhibit 7b) 

are present.  If the net income example was comprehensively being modeled as it 

would in the real world, it would be necessary to complete a separate sequence 

diagram for each potential variation in the presence of optional components. 

Note:  A graphical user interface must also be created.  It must enable the 
user to view the results of the net income calculation.  Also, since no outside 
systems are involved in the use case, no plan is necessary for the case of 
unavailability. 

Exhibit 9a: Calculate Net Income  

Net Income is displayed 

Request for Net Income 

SystemUser 

 38



 

 

 

 

 

 

 

 

 

 

Note: If the general ledger becomes unavailable, the user will be prompted to 
manually input each figure (exhibit 9d). 

Exhibit 9b: Get Revenue and Wholesale Expense Figures from the General Ledger  

Request for Other Expenses 

Request for Bad Debt Expense

Request for Depreciation

Request for Advertising & Promotion 

Request for Sales Salaries

Request for Purchases 

Request for Sales Revenue 

Request for Other Revenue 

System
General 
Ledger 

 39



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: If the general ledger becomes unavailable, the user will be prompted to 
manually input each figure (exhibit 9e). 

Exhibit 9c: Get Revenue and Manufacturing Expense Figures from General Ledger 

Request for Direct Labor

Request for Manufacturing Overhead

Request for Other Expenses

Request for Bad Debt Expense 

Request for Depreciation 

Request for Advertising & Promotion 

Request for Sales Salaries 

Request for Direct Materials

Request for Sales Revenue

Request for Other Revenue

System 
General 
Ledger 

 

 

 40



Note:  A graphical user interface must also be created.  It must enable the user 
to enter the relevant revenue and expense figures.  Also, since no outside 
systems are involved in the use case, no plan is necessary for the case of 
unavailability. 

Other Expenses Entered 

Request for Other Expenses

Bad Debt Expense Entered

Request for Bad Debt Expense 

Depreciation Entered

Request for Depreciation 

Advertising & Promotion Entered 

Sales Salaries Entered

Request for Advertising & Promotion 

Request for Sales Salaries 

Purchases Entered 

Request for Purchases

Other Revenue Entered 

Request for Sales Revenue

Request for Other Revenue

Sales Revenue Entered 

System User 

Exhibit 9d: Get Revenue and Wholesale Expense Figures from the User 

 41



 Exhibit 9e: Get Revenue and Manufacturing Expense Figures from User 

 

 

 

Note:  A graphical user interface must also be created.  It must enable the user 
to enter the relevant revenue and expense figures.  Also, since no outside 
systems are involved in the use case, no plan is necessary for the case of 
unavailability. 

Direct Labor Entered

Request for Direct Labor 

Manufacturing Overhead Entered 

Request for Manufacturing Overhead 

Other Expenses Entered

Request for Other Expenses 

Bad Debt Expense Entered

Request for Bad Debt Expense

Depreciation Entered 

Request for Depreciation

Advertising & Promotion Entered

Sales Salaries Entered 

Request for Advertising & Promotion 

Request for Sales Salaries

Direct Materials Entered 

Request for Direct Materials

Other Revenue Entered

Request for Sales Revenue 

Request for Other Revenue 

Sales Revenue Entered

SystemUser 

 42



The next task for step five is to consider including one or more 

collaboration diagrams.  These diagrams are useful for showing the objects and 

links that are meaningful within an interaction between different entities and 

domains, or between various components.  Since at this point in the problem 

solving process we do not have design details regarding parameters and local 

variables that will be used in the actual implementation, we will actually use a 

simplified version of the diagrams that just identify what type information is 

being passed.  Our goal is to document the business logic involved in the process 

including any decisions, processes or computations.  We will use the actual 

business terminology that is consistent with the contents of the domain dictionary.  

This will be the same level of detail that we used for the sequence diagrams.  As 

with the sequence diagrams, for a real life problem domain, it is necessary to 

create a collaboration diagram for each possible feature combination. 

Exhibits 10a, 10b, 10c, and 10d cover four different scenarios that occur 

for the example net income domain.  These four examples show the potential 

variations that exist when none of the optional components (shown in Exhibit 7b) 

are present.  While clients are not likely to switch from being manufacturers to 

wholesalers and vice versa, availability of the general ledger system may come 

and go over time in a distributed system.  Exhibit 10a shows what happens when 

the client is a wholesaler and the general ledger is able to supply revenue and 

expense information.  Exhibit 10b portrays what happens when the client is again 

a wholesaler but this time the general ledger is unavailable.  In the case of exhibit 

 43



10c, the client is a manufacturer and the general ledger is available.  Finally in 

10d, the client is a manufacturer and the general ledger is once more unavailable.     

 

 Exhibit 10a: Collaboration Diagram 1 for the Net Income Domain 

                        

 44



 

 
Exhibit 10b: Collaboration Diagram 2 for the Net Income Domain 

                        

 45



  

 

Exhibit 10c: Collaboration Diagram 3 for the Net Income Domain 

                        

 

 

 46



 

 

 

 

 

 

 

 

 

 

Exhibit 10d: Collaboration Diagram 4 for the Net Income Domain 

                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The final task in step five is to create a domain model that shows the 

structural relationships between different entities and objects within the domain.  

These objects may consist of all features and other potential components that are 

known at this time.  This model will show how the various objects of the system 

fit together to make up the overall architecture.  Communications between objects 

are represented using association lines that are labeled with meaningful titles 

illustrating the relationships between the two objects.  In general association lines 

will be solid, but we have represented them with both solid and dashed lines to 

make the diagram easier to read.  This model helps to show the composition of the 

 47



overall domain and should be used to illustrate relevant dictionary terms.  The 

objects in this diagram become candidates for components in the design phase.  

Only objects inside the system should be shown in this model.  Any interactions 

with outside entities can be included by using interface components.  Exhibit 11 

shows the domain model for the net income domain.  The dashed lines show 

communications between the user interface and various feature components.  Any 

association lines that appear to go through a feature component are actually 

intended to go behind it.  For example, there is no association between Other 

Revenue and Sales Revenue. 

 

 

 

 

 

 

 

 

Exhibit 11: Domain Diagram for the Net Income Domain 

                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 48



Step VI: Validate Models, Dictionary, and Domain Descriptions 

The goal of step six is to validate the models developed in step five, the 

domain dictionary, and the updated domain description with the relevant 

stakeholders.  As a part of this validation process, look for potential variants in the 

models.  This may help identify applications that should fall into the problem 

domain that have not yet been considered.  This idea of looking for variants was 

proposed by Michael Jackson in his book about problem frames [13].   As he 

suggests, we will look for four different types of potential variants. 

The first potential variant is a description variant.  This type of variant 

usually delays the time when a decision is bound.  For example, instead of 

deciding whether a client is a manufacturer or a wholesaler before building the 

system, perhaps we would want to let the user decide which one he is every time 

he asks for a net income calculation.  The system could then go out to some sort 

of a description file to find out what types of revenues and expenses are 

associated with whichever type of client the user picked.  Since the type of 

organization in the example being considered does not typically change day to 

day, this variant will not be used for the net income example.   

The second potential variant is an operator variant.  Operator variants 

specify the circumstances under which the behavior of a system must change.  

This may include changing default behaviors or assigning rules for overriding 

default behaviors.  In the net income example, the system first looks to a general 

ledger system for revenue and expense figures.  If the general ledger is not 

available, the user is prompted to input these values.  This behavior is specified in 

 49



case the client has some sort of a general ledger printout available, but the system 

is unable to connect to the general ledger itself (perhaps a portion of the network 

is down).  This is an example of an operator variant.  For this example, the 

sequence diagrams already contain provisions for this scenario.  

The third type of variant is the connection variant.  This type of variant 

deals with examining the reliability of connections.   Since many systems are 

distributed in nature, it is necessary to specify how the system will behave if 

suddenly some portion of its resources become unavailable.  This could be 

applicable to communications from the domain to outside entities or even 

between components of the domain itself if they do not physically reside on the 

same machine.  The same example that was used for the operator variant in the 

net income example would also apply here since the required behavior change is 

based on connection availability. 

The fourth and final potential variant is the control variant.  This is 

relevant when control is shared by two entities, domains, or components.  When 

this occurs it is important to consider which object should have control at various 

times, under various circumstances.   

All of the models prepared in step five should be updated to reflect new 

information learned during this variant analysis.  Additional diagrams may be 

required or adjustments to existing diagrams may suffice.  Once the domain has 

been expanded to include any potential variants that were identified and all of the 

major stakeholders have agreed on the revised contents of the models, domain 

definition and domain scope, it is time to move onto step seven. 

 50



Step VII: Create Decision Model 

The only task for step seven is to create a decision model to be used in 

new development efforts within the domain.  This decision model should describe 

the process that an application engineer would need to follow to specify the 

requirements of a new family member using the components and variabilities that 

have been identified in the existing models.  It is important to include every 

decision that must be made in the model.  This allows an application engineer to 

be able to specify parameters for a new application without first becoming an 

expert in the domain.  After following the decision model, the application 

engineer should have a list of what features/components will need to be included 

in the application created for his particular problem.  This information will be 

used to specify the problems parameters using an application domain specific 

language.  The ADSL is described in step seven. 

The decision model can be created easily from the feature diagram.  Since 

all mandatory features must be included in any final application, they do not need 

to be included in this decision model.  Any optional features may or may not be 

present in each application, so they should be included in the decision model.  If 

there is some logical order in which the decisions should be made for a particular 

domain, then it is important to lay them out in that order for the decision model.   

There are two different styles that may be used to create the decision 

model.  The first style is to use an activity diagram from UML.  This type of 

diagram is useful for showing what types of feature decisions may be made 

concurrently as well as explicitly stating the order that any decisions/processes 

 51



must follow.  The second style is to use basic flow-charting notation to mark 

starting and ending points, decisions, and processes.  This is useful to emphasize 

the feature decisions that must be made and to present them in a straightforward 

manner.  One or both of these types of decision models may be used for a 

problem domain. 

Exhibit 12a contains an activity diagram style decision diagram, while 

exhibit 12b contains a decision diagram in the flow-chart style for the net income 

domain.  

 52



  
E

xh
ib

it 
12

a:
 A

ct
iv

ity
 D

ia
gr

am
 S

ty
le

 D
ec

is
io

n 
M

od
el

 fo
r 

th
e 

N
et

 In
co

m
e 

D
om

ai
n 



  Exhibit 12b: Flow-Chart Style Decision Model for the Net Income Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Step VIII: Create ADSL 

The goal of this step is to create an Application Domain Specific 

Language.  The ADSL allows us to express the parameters of a specific 

application in a consistent way for a particular domain.  This is useful because, if 

the language created is consistent, then it is possible to send a text description of a 

new application to a generator and have that application be automatically 

produced.  This is the goal of generative programming.  The difficult part is to 

find a language with sufficient expressive power to specify a new application that 

does not take too long to develop.  For the purposes of this report’s proposed 

method, it is sufficient to express the contents of the feature diagram in an ADSL.    

Another advantage to using an ADSL is that once base level (i.e. ones 

with all optional features being present) collaboration and sequence diagrams 

have been developed, it may be possible to write programs that will generate 

additional diagrams representing the different potential feature combinations.   

This possibility is explored further in the future research directions section of this 

report. 

We will use a slightly altered version of the ADSL method proposed by 

Deursen and Klint [14].  Each feature is named and followed by “:” and a feature 

expression.  According to Deursen and Klint the feature expression can consist of:  

• an atomic feature, 

• a composite feature: a feature whose definition appears elsewhere, 

• an optional feature: a feature expression followed by “?”, 

• mandatory features: a list of features enclosed in all (), 

 55



• alternative features: a list of feature expressions enclosed in one-of (), 

• non-exclusive features: a list of feature expressions enclosed in more-of (), 

• a default feature value: default = followed by an atomic feature, 

• and remaining features of the form…, indicating that a given set is not 

completely specified. 

 

The ADSL proposed by Deursen and Klint requires two additions to 

enable it to represent the extended feature diagrams that this report uses.  The first 

addition deals with how to represent a non-essential feature.  This shall be 

designated by a * preceding the feature name.  To illustrate this notation, we will 

assume for a moment that Bad Debt Expense is a non-essential system 

component.  The other extension is to represent communication between two 

components.  If the communication is one way, we will say: talks-to (component 

A, component B).  This represents a one-way communication from component A 

to component B.  On the other hand if the communication is in both directions we 

say: talks-with (component A, component B). The components included may be 

either optional or mandatory components.  If a talks-to() or talks-with() statement 

is included with an optional component for the specification of a particular 

application that does not contain that optional component, the talks-to() or talks-

with() statement should simply be ignored. For the sake of illustration we will 

assume that Other Revenue must send a message to Other Expenses and that 

Advertising and Promotion must be able to send and receive messages from Sales 

Revenue.  

 56



Another revision that we shall make to the Deursen and Klint ADSL 

method involves changing the definitions of composite features and mandatory 

features.  Although Deursen and Klint say that mandatory features are enclosed in 

the all() notation, they actually use all() with both mandatory and optional 

features inside the parenthesis in the example presented in their paper.  We will 

eliminate this inconsistency by clarifying that the all() notation will actually be 

used to define a composite feature.  Further, each atomic feature will be 

designated to be a mandatory feature unless it is explicitly noted to be optional.   

We also have changed the definitions of the more_of() and one-of() 

expressions to only allow choices between a group of optional features, not a 

group of unspecified feature expressions.  This is necessary to disallow certain 

illegal feature combinations.  The first example of this would be the use of the 

one-of() with a list of mandatory features.  If the list included one mandatory 

feature then the one-of() expression is unnecessary and if it contained more than 

one mandatory expression it would be logically incorrect.  It is also incorrect to 

use the more-of() expression with a list of mandatory features.  More than one 

mandatory features can be represented without the use of this expression 

As a final revision, we will remove the ability to use the form … to define 

a feature expression without specifying its complete contents.  Since this language 

is intended for use with a generator, it is better to explicitly specify feature 

expression contents.  The revised informal definition of a feature expression is 

presented in Exhibit 12. 

 57



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 12: Revised Feature expressions 
 
 A feature Expression may consist of: 
 

• an atomic feature which is defined by the domain dictionary 
 

• a composite feature: a feature expression that is defined by a list of feature 
expressions enclosed in all () 

 
• an optional feature: a feature expression followed by “?” 

 
• mandatory feature: an atomic feature or a feature expression followed by an “!” 

 
• alternative features: a list of optional features enclosed in one-of () 

 
• non-exclusive features: a list of optional features enclosed in more-of () 

 
• a default feature value: default = followed by an atomic feature 

 
• a non-essential feature: a feature expression preceded by “*” 

 
• one-way communication: two or more mandatory or optional features enclosed in 

talks-to (). The first feature sends messages to each of the remaining features. 
 

• two-way communication: a list of mandatory or optional features enclosed in talks-
with ().  All of the features listed may communicate with each other. 
 

 

58



The ADSL is formally defined in Exhibit 13 using Backus-Naur Normal 

Form notation.  The FEATURE mentioned comes from the domain dictionary.   

  

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 13: ADSL in Backus-Naur Form 
 
<constraint-exp> ::= <atomic-feature> : <feature-exp> 
 
<feature-exp> ::=  <composite-feature> | <optional-feature> | <default-feature> | 

 <mandatory-feature> | <alternative-feature> | <non-exclusive-feature> |  
 <non-essential-feature> | <one-comm> | <two-comm> 

 
<atomic-feature> ::= FEATURE 
 
<composite-feature> ::= all( <feature-list> ) 
 
<optional-feature> ::= < feature-exp>? 
 
<mandatory-feature> ::= <atomic-feature> | < feature-exp>! 
 
<alternative-feature> ::= one-of( <optional-feature-list> ) 
 
<non-exclusive-feature> ::= more-of( <optional-feature-list> ) 
 
<default-feature> ::= default = <atomic-feature> 
 
<non-essential-feature> ::= * < feature-exp> 
 
<one-comm> ::= talks-to( <feature-list> ) 
 
<two-comm> ::= talks-with( <feature-list> ) 
 
<feature-list> ::= < mandatory-feature-list> | <optional-feature-list>  |  

< mandatory-feature-list>, <optional-feature-list>  |   
<optional-feature-list>,  < mandatory-feature-list> 

 
<mandatory-feature-list> ::= <mandatory-feature> | <mandatory-feature>, < mandatory-feature-list> 
 
<optional-feature-list>::= <optional-feature> | <optional-feature>, <optional-feature-list> 

 59



Exhibit 14 shows the impact of the changes on the ADSL for the net 

income domain.  From this exhibit, it is possible to recreate the feature diagram 

for the net income domain.  For example we know that it would begin with the net 

income feature that is made up of two mandatory features: revenue, and expense.  

Applying each expression one after another, the entire diagram can be recreated. 

 

 

 

 

 

 

 

 

 

 

Exhibit 14: ADSL for the Net Income Domain 
 
Net Income : all ( Revenue,  Expenses ) 
 
Revenue : all ( Sales Revenue, Other Revenue? ) 
 
Expenses : all ( Cost of Goods Sold,  Selling and Administrative Costs, Other Expenses? ) 
 
Cost of Goods Sold : one-of ( Cost of Goods Wholesaled?, Cost of Goods Manufactured? ) 
 
Cost of Goods Wholesaled : Purchases 
 
Cost of Goods Manufactured  : all ( Direct Materials, Direct Labor, Manufacturing Overhead ) 
 
Selling and Administrative Costs :  more-of (Sales Salaries?,  Advertising and Promotion?,   

Depreciation?,  * Bad Debt Expense? ) 
 

talks-to ( Other Revenue?, Other Expenses? ) 
 
talks-with (Selling and Administrative Costs, Sales Revenue ) 

Once the ADSL has been created, the model of the overall problem 

domain is complete.  Using the ADSL and the diagrams and UML models that 

have been created, an application engineer should have all of the tools necessary 

to generate a design model for the solution to a specific problem within the 

domain. 

Step IX: Validate Decision Model and ADSL 

The task for step nine is to meet with domain experts and have them 

validate the decision model and the ADSL created in steps seven and eight.  This 

 60



should be done in a session with several domain experts, representatives from the 

domain modeling team, and two application engineers aren’t very knowledgeable 

of the domain area.  The experts propose at least two realistic problems that 

would fall within the domain.  The application engineers then attempt to follow 

the decision model to define features and express the application in the ADSL.  

The domain experts oversee this process as it is being carried out.  This session 

should identify usability problems.  Feedback from both the application engineers 

and the domain experts should be used to improve the model and/or the ADSL.    

Any necessary revisions should be made before moving on to step ten. 

Step X: Get Final Signoff 

This is the final step in the process.  The one action item is to get the final 

signoff from all of the major stakeholder groups.  This will most likely involve a 

formal presentation.  The project team should demonstrate that they have 

successfully achieved all of the project goals.  They should give an overview of 

important information learned about the domain.  They should demonstrate that 

UML diagrams prepared adequately capture the systems behavior and that the 

decision diagram and ADSL can be used to adequately represent application 

variabilities.  They should also present important metrics such as whether the 

project was completed in the time allotted to it and whether it stayed under its 

allocated budget.   

The actual sign-off procedure will be done in a manner proposed by Ian 

Graham in his book on Object-Oriented Methods [15].  A signoff sheet will be 

circulated to each stakeholder previously identified.  Each stakeholder may sign 

 61



off as being in agreement that the problem analysis phase has been completed in a 

way that the project is now able to move on to the solution stage.  If they are not 

in agreement, they must sign that they are in strong disagreement with what has 

been achieved so far.  Any signatures stating strong disagreement will prevent the 

project from moving forward.  An open issues document should also accompany 

this signoff sheet.  Anyone who has a strong divergent opinion over a specific 

aspect of the project can document his or her point of contention on this open 

issues sheet and still sign that they are in agreement with the project progress 

overall.  Any open issues recorded must have a specific person assigned to resolve 

them and a deadline.  This will allow everyone to go away from the meeting 

feeling that the efforts so far have been a success. 

Summary 

The summary form of the complete process is as follows: 

1) Document an initial description of the domain.  This description should 
include the following elements: 
a) A problem statement. 
b) A general description of capabilities of the proposed application family 
c) Examples of any existing applications which would fall into this domain 
 

2) Identify potential stakeholders and domain experts (individuals and/or 
groups).  Consider the following groups of people: 
a) Senior Management 
b) Project Management 
c) End Users 
d) Customers 
e) Other service recipients  
f) Investors 
g) Developers 
h) Regulators 
 

 62



3) Conduct a series of moderated meetings with representatives from each group 
of stakeholders and domain experts.  The following tasks should be 
accomplished: 
a) Define the overall project objectives.  
b) Expand the domain description.  Include any performance constraints that 

the new system family must satisfy. 
c) Define the boundaries of the Domain.  Make a note of any known 

entities/applications that may interact/communicate with instances of this 
new domain. 

d) Identify potential sources of information about the domain.  Consider the 
following: 
i) Information regarding applications which have previously been 

developed, that fall into the domain (i.e. requirements analysis, 
existing code, etc.) 

ii) Developers that may have worked on related applications. 
iii) Other domain experts not previously identified. 
iv) Users of existing applications. 
v) People/Documents that have information about entities/other domains 

with which applications from this domain must communicate. 
vi) Other existing sources of information including textbooks, standards, 

etc. 
 
4) Gather/Document potentially relevant domain information. 

a) Interview domain experts. 
b) Explore other potential information sources. 
c) Create a dictionary of common domain terms. 
d) Identify features of applications within the domain.  Consider the 

following: 
i) Commonalities across all applications 
ii) Variabilities between applications 
iii) Note any composition rules. 

e) Document any required APIs, which must be used to communicate 
with neighboring domains/entities.  Document what type of 
communication takes place. 

 
5) Model the domain.  Any additional information learned regarding domain 

terms should be used to update the dictionary. 
a) Use extended feature models to document commonalities and 

variabilities of function for applications falling within the domain.  If 
there is a need for leaf node features to communicate with each other, 
include this in the diagram. 

b) Create a series of use case diagrams that show how the user as well as 
any outside entities or domains will interact with applications falling 
within the new domain. 

c) Create one or more sequence diagrams to show how this new domain 
would communicate with other domains/entities.  Include with each 

 63



diagram a text description of what should take place if/when any of 
these outside entities become unavailable.  If the method by which 
these two entities will communicate is unknown, document this as a 
part of the diagram. 

d) In addition to sequence diagrams, consider creating one or more 
collaboration diagrams.   

e) Create a domain model that shows the structural relationships between 
different entities and components within the domain. 

 
6) Validate models, dictionary, and the updated domain description with 

users and domain experts.  As a part of this validation process, look for 
potential variants in the models.  This may help identify applications that 
should fall into the problem domain that have not yet been considered.   
a) Make any revisions necessary.  
b) Make sure all parties are in agreement as to the scope of the domain.  
 

7) Define a decision model to be used in new development efforts within the 
domain.  This decision model follows the process that an application 
engineer would need to follow to specify the requirements of a new family 
member. 

 
8) Create ADSL (Application Domain Specific Language).  This language 

will be used by application engineers to specify new product instances. 
 
9) Validate decision model and ADSL with domain experts. 
 
10) Get final signoff from all major stakeholder groups. 

 
 

Exhibit 15 contains a summarized list of the major artifacts created by this 

process.  The step in which they are first created and later validated are also 

noted. 

 64



 

 

Exhibit 15: Artifacts Created 
 
 

 

 

 

 

 

 65



Future Research Directions 

The first area of future research deals with the domain dictionary.  So far 

we have assumed that a document of relevant terms is kept.  We have not 

specified how this is to be kept or how to use this document to describe aspects of 

the domain outside of the feature diagram.  An interesting area of research would 

be how to use terms within the dictionary to compose sentences that might 

describe the UML models created in this process including the use case diagrams, 

sequence diagrams, collaboration diagrams, and the domain model. 

The second area of potential future research was already briefly mentioned 

in the section of this report that described step VIII (the creation of the ADSL).  

As was briefly mentioned in that section, it may be possible to write programs 

that will generate additional diagrams representing the different potential feature 

combinations once base level diagrams have been created.  The next two 

paragraphs describe two possible approaches to this problem. 

One possibility is to develop all use case diagrams, the domain model, and 

a series of base level sequence and collaboration diagrams corresponding to the 

different use case scenarios, then write a program that creates the additional 

sequence and collaboration diagrams necessary to illustrate the different possible 

combinations of optional features.  This series of base level diagrams would 

contain all of the possible optional components somehow annotated to show that 

they are variable. 

The other possibility is to look into representing the entire domain as a set 

of four diagrams (use case, sequence, collaboration and domain).  Each diagram 

 66



would contain all of the possible optional components.  These components would 

need to be marked as variable perhaps using some notation from the ADSL.  The 

goal would be to then use a UML interpreter to generate whatever specific models 

are needed for an individual system specified by an application engineer.   

A good beginning reference for how to model variability in UML 

diagrams is Matthias Clauß’s paper [17].  In this paper, Clauß presents extension 

notations to represent the location of the variability, the variants, and the 

relationship that assigns each variant to its variation point.  These notations 

involve the use of stereotypes.  Clauß states that this notation can be applied 

towards classes, components, packages, collaborations, and associations.  His 

paper presents an example class diagram that uses his proposed notation. 

The other logical area of future research is to move on to the design phase 

of domain engineering.  The same type of process needs to be developed for this 

phase.  It should combine aspects of current processes with UML diagrams and 

give consideration to concerns associated with distributed programming, as we 

have done for the problem phase in this report.  

 67



Conclusion 

This report presents a ten-step detailed process that can be followed to 

effectively understand, document, and model the problem space of a new domain.  

This process combines important aspects of existing domain engineering 

processes into one method.  It also adds several elements that current processes 

lack including: the use of updated modeling techniques (the use of UML) and 

giving early consideration to concerns arising from the distributed heterogeneous 

programming environment that is becoming more and more common today.  For 

example, the definition of the feature model, which was first proposed by the 

FODA method of domain engineering, has been extended to take communication 

and availability concerns between components into account.  The process also 

specifies a grammar that can be used to describe the contents of an extended 

feature model.  The proposed method is explained step by step and is illustrated 

through the use of an example problem. 

The end result of this process is a model of the overall problem domain.  

This model is comprised of the ADSL, its mathematical composition rules, and 

the various diagrams and UML models that have been created.  Design engineers 

can use these artifacts to create a common architecture for the domain during the 

domain design phase of domain engineering.  During domain implementation, this 

system architecture will actually be built along with a generator that will accept 

individual system descriptions in terms of the ADSL.  The model of the problem 

domain will once again be used during application engineering when the 

 68



application engineer will use it to specify necessary parameters to generate a 

design model for the solution to a specific problem within the domain. 

 69



List of References 

1. Czarnecki, K., and Eisenecker, U. “Components and Generative Programming” 
Invited talk, in Proceedings of the Joint European Software Engineering 
Conference and ACM SIGSOFT International Symposium on the Foundations of 
Software Engineering (ESEC/FSE'99, Toulouse, France, September 1999). 

2. Czarnecki, K., Eisenecker, U., “Generative Programming Methods, Tools and 
Applications”, Addison-Wesley, 2000. 

3. Kang, K., et al. “Feature-Oriented Domain Analysis (FODA) Feasibility Study” 
(CMU/SEI-90-TR-21, ADA 235785). Pittsburgh, PA: Software Engineering 
Institute, Carnegie Mellon University, 1990. 

4. http://www.sei.cmu.edu/str/descriptions/foda_body.html 

5. Simos, Mark A., “Organization Domain Modeling: A Tailorable, Extensible 
Framework for Domain Engineering”. Proceedings of the 4th International 
Conference on Software Reuse (ICSR ’96), pp. 230 - 232. 

6. Simos, M., “Organization Domain Modeling (ODM): Formalizing the Core 
Domain Modeling Life Cycle”. SIGSOFT Software Engineering Notes, Special 
Issue on the 1995 Sympsium on Software Reusability, Aug 1995, pp. 196 - 205. 

7. Weiss, David M., “Software Synthesis: The FAST Process”, MultiUse Express, 
June 1994. 

8. Ardis, M.,Daley, N., Hoffman, D., Siy, H., Weiss, D., “Software Product Lines: a 
Case Study”. Software Practice and Experience 30(7), June 2000 pp. 825-847. 

9. Widen, Tanya, “Formal Language Design in the Context of Domain 
Engineering”. Master’s Thesis, Oregon Graduate Institute, June 1998. 

10. Gacek, Cristina, “Exploiting Domain Architectures in Software Reuse” 
Proceedings of the ACM-SIGSOFT Symposium on Software Reusability 
(SSR'95), ACM Press, Seattle, WA, 28-30 April 1995, pp. 229-232. 

11. J. Neighbors, “Draco: a method for Software Systems”, “Software Reusability”, 
Biggerstaff & Perlis, ACM Press 1989. 

12. Rumbaugh, J., Jacobson, I., Booch, G. “The Unified Modeling Language 
Reference Manual”, Addison-Wesley, 1999.         

13. Jackson, Michael. “Problem Frames: Analyzing and structuring software 
development problems”, Addison-Wesley, 2001.         

 70

http://www.sei.cmu.edu/str/descriptions/foda_body.html


14. Van Deursen, Arie, and Klint, Paul, “Domain-Specific Language Design Requires 
Feature Descriptions”, Journal of Computing and Information Technology, 2002. 

15. Graham, Ian. “Object-Oriented Methods: Principles & Practice”, Addison-
Wesley, 2001. 

16. http://www.omg.org/  

17. Clauß, Matthias, “Generic Modeling using UML extensions for variability”, 
OOPSLA 2001: Workshop on Domain Specific Visual Languages. 
http://www.isis.vanderbilt.edu/oopsla2k1/Papers/Clauss.pdf  

 

 71

http://www.omg.org/
http://www.isis.vanderbilt.edu/oopsla2k1/Papers/Clauss.pdf

	Copyright(2002   All rights reserved
	All copies must contain this copyright notice.
	
	
	
	
	
	
	For permission to copy, contact







	Department of Computer & Information Science
	
	
	
	
	
	
	723 W. Michigan Street, SL 280







	Indiana University – Purdue University
	Indianapolis, IN  46202-5132�Acknowledgements
	Table of Contents
	Abstract
	Introduction
	Project Summary
	Domain Engineering
	Generative Programming

	Existing Methods of Domain Engineering
	Feature-Oriented Domain Analysis (FODA)
	Organization Domain Modeling (ODM)
	Family-Oriented Abstraction, Specification and Translation (FAST)
	Software Design Automation (SDA)

	Proposed Method for Modeling the Problem Space of a
	Variable Domain
	Introduction
	Method
	Step I: Describe the Problem Domain
	Step II: Identify Stakeholders
	Step III: Expand Domain Definition
	Step IV: Acquire and Document Relevant Domain Information
	Task four is to identify common features for applications that will fall within the domain.  These features should be classified based on whether they will appear in every application created (common features) or whether they will appear in only some o

	Step V: Model the Domain
	Step VI: Validate Models, Dictionary, and Domain Descriptions
	Step VII: Create Decision Model
	Step VIII: Create ADSL
	Step IX: Validate Decision Model and ADSL
	Step X: Get Final Signoff
	Summary


	Future Research Directions
	Conclusion
	List of References

